50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and for equations written eg. 42 · 8 17CS834

Eighth Semester B.E. Degree Examination, July/August 2022 System Modeling and Simulation

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. List any five circumstances, when the simulation is the appropriate and when it is not.
 - (05 Marks) (05 Marks)

b. Write the advantages and disadvantages of simulation.

(U.S. STALKS

c. Explain with a flow chart the steps involved in simulation study.

(10 Marks)

OR

- 2 a. Explain event-scheduling / Time advance algorithm with example. (10 Marks)
 - b. Develop a manual simulation table for single server queuing system of a grocery shop for 6 customers and find, (i) Average waiting time of customer (ii) Idle time of server (iii) Average time customer spends in system. (iv) Probability wait customers arrive at shop randomly from 1 to 8 minutes and have equal probability. Service time varies from 1 to 6 minutes. The random digits for IAT and ST are 913, 727, 015, 948, 309 and 84, 10, 74, 53. 17, 79 respectively.

(10 Marks)

Module-2

- 3 a. Explain discrete distribution and continuous distribution with examples. (10 Marks)
 - b. What is Poisson process? Mention the properties of Poisson process. (10 Marks)

OR

4 a. Explain the characteristics of a queuing system.

(10 Marks)

b. State and explain Kendal's notation for queuing system.

(10 Marks)

Module-3

- 5 a. Explain combined linear congruential method for random number generation. (10 Marks)
 - b. The sequence of numbers 0.44, 0.81, 0.14, 0.05, 0.93 has been generated. Use the Kolmogorov-Smirnov test with $\alpha = 0.05$ to determine if the hypothesis that the numbers are uniformly distributed on the interval (0, 1) can be rejected. Compare F(X) and $S_n(X)$ on a graph (where $D_{\alpha} = 0.565$) (10 Marks)

OR

- 6 a. Write a step by step procedure to generate random variate using inverse transform technique for exponential distribution. (10 Marks)
 - b. Explain acceptance rejection technique. Generate 3 Poisson variate with mean 0.2. Consider the random numbers 0.4357, 0.4146, 0.8353, 0.9952, 0.8004 (10 Marks)

Module-4

- 7 a. List the steps involved in the development of a useful model of Input data and also write the important suggestions to be noted while collecting the data. (10 Marks)
 - b. Explain the different methods used to identifying the distribution with data. (10 Marks)

OR

8 a. Using goodness of fit test, test whether random numbers are uniformly distributed based on Poisson assumption with level of significance $\alpha = 0.05$, $\hat{\alpha} = 3.64$. Sample data are

Poisson assumption with level of significance a						C ()	0.05 , $\alpha = 3.01$. Sumple data are						
Interval	0	1	2	3	4	5	6	. 7	. 8_	9	. 10	. 11	
Observed	12	10	19	· 17	10	8	7	5	, 5	3	3	1	
frequency													
[where $\chi^2_{0.05}$	11.1]										(1	0 Mark	(s)

b. Explain the types of simulation with respect to the output analysis. (10 Marks)

Module-5

9 a. Explain with neat diagram, model building, verification and validation.
b. Describe the three steps approach to validation by Naylor and Finger.
(10 Marks)
(10 Marks)

OR

a. Explain output analysis for terminating and steady state simulation.
b. Explain optimization vice simulation.
(10 Marks)
(10 Marks)

* * * * *